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Preliminaries

• This is a rather complete and very fast introduction to ERGMs
• All computation is done using the statnet package

install.packages("ergm")
install.packages("network")
install.packages("coda")

• All R code is provided within the slides for your convience
• These slides attempt to walk a tight rope of enough

mathematical detail to be useful and enough intuitive insights
to allow for use of ERGMs in your research
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Statistical Models for Social
Networks



Relational Data
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• A collection of entities and a set of measured relations
between them

• Entities: nodes, actors, egos, units, respondents
• Relations: ties, links, edges

• Relations can be
• Directed or undirected
• Valued or dichotomous (binary)
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Core Areas of Statistical Network Analysis

1. Design-based inference: Network inference from sampled data
• Design: survey and data-gathering procedures.
• Inference: generaliation of sample data to full network

2. Statistical modeling: evaluation and fitting of network models
• Testing: evaluation of competing theories of network formation
• Estimation: evaluation of param in a presumed network model
• Description: summaries of main network patterns
• Prediction: prediction of missing or future network relations
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Data Analysis Goals
2004 RNC/DNC Credentialed Blogs Citation Network

• How do network features drive our data analysis?
1. How can we describe features of social relations?

• E.g., reciprocity/sociability/transitivity: descriptive
2. How can we identify nodes with similar network roles?

• E.g., stochastic equivalence : node partitioning
3. How do we relate the network to covariate information?

• E.g., homophily: regression modeling

6



Common Features of Interest

Beyond nodal and dyadic attributes, many networks exhibit the
following features:

• Reciprocity of ties
• Degree heterogeneity among actors

• Sociability, Popularity

• Homophily by actor attributes
• Higher propensity to form ties between actors with similar attr

• Transitivity of relationships
• Friends of friends have a higher propensity to be friends

• Balance of relationships
• Liking those who dislike whom you dislike

• Equivalence of nodes
• Some nodes may have identical/similar patterns of relationships
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Examples!

Now let’s look at some examples. . .
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Militarized Interstate Disputes
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1993 militarized interstate disputes (MIDs)

Correlates of War Project
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County-to-County Migration in the US

IRS Migration Data, 2000−2001

Threshold at 99%
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Faux Desert High (Simulation of an Add Health HS)
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World Trade Center Radio Communication

Data set coded by Butts et al. (2007)
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David Krackhardt (1987) Perceived Friendships
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SAR EMONs, All Reported Ties, from Drabek et al 1981

Cheyenne HurrFrederic LakePomona MtSi

MtStHelens Texas Wichita
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Inferential Goals in the Regression Framework

yij measures i → j , xij is a vector of explanatory variables

Y =


y11 y12 y13 NA y15 . . .

y21 y22 y23 y24 y25 . . .

y31 y32 y33 y34 y35 . . .

y41 y42 y43 y44 y45 . . .
...

...
...

...
...

 X =


x11 x12 x13 x14 x15 . . .

x21 x22 x23 x24 x25 . . .

x31 x32 x33 x34 x35 . . .

x41 x42 x43 x44 x45 . . .
...

...
...

...
...


Consider a basic (generalized) linear model

yij ∼ βT xij + eij

A model can provide

• A measure of the association between X and Y : β̂, se(β̂)
• Imputations of missing observations: Pr(y14|Y ,X )
• A probabilistic description of network features:

g(Ỹ ), Ỹ ∼ Pr(Ỹ |Y ,X ) 15



Statistical Models for Social Networks

• A social network is defined as a set of n entities (e.g., social
“actors”) and a relationship (e.g., friendship) between each pair
of entities

Yij =

1 relationship from actor i to actor j
0 otherwise

• Often Y := [Yij ]n×n is called a sociomatrix
• And, graphical representation of Y a sociogram

• Diagonal typically undefined or 0 (i.e., Yii = NA)
• Y represents a random network with nodes as the actors and

edges the relationship

• The basic problem of stochastic modeling is to specify a
distribution for Y , i.e. Pr(Y = y)
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A Framework for Network Modeling: ERGM

• Let Y be the sample space of Y , e.g. {0, 1}N

• Any model-class for the multivariate distribution of Y can be
parameterized in the form

Pr(Y = y) = exp{θT g(y)}
κ(θ,Y) , y ∈ Y

• θ ∈ Θ ⊂ Rq q-vector of parameters
• g(y) q-vector of network statistics
• For a “saturated” model-class q = 2|Y| − 1
• κ(θ) distribution normalizing constant

κ(θ,Y) =
∑
y∈Y

exp{θT g(y)}
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Classic Probability Models for
Networks



Classics: Bernoulli Graphs

• Yij are independent but have arbitrary distributions (conditional
independence of edges)

Pr(Y = y) =
exp

{∑
ij θijyij

}
κ(θ) , y ∈ Y

gij(y) = yij , i , j = 1, . . . , n q = N
θij = logit(Pr(Yij = 1))

κ(θ) =
∏
ij

(1 + exp(θij))

• Yij can depend on dyadic covariates Xij

θij = Xijβ
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Classics: Holland and Leinhardt’s p1 model

• Holland and Leinhardt (1981) proposed a general dyad
independence model

• Also, a homogeneous version they refer to as the p1 model

Pr(Y = y) =
exp{ρ

∑
i<j yijyji + φy++ +

∑
i αiyi+ +

∑
j βjy+j}

κ(ρ, α, β, φ)

• Where θ = (ρ, α, β, φ)

• φ controls the expected number of edges
• ρ represent the expected tendency toward reciprocation
• αi productivity of node i
• βj attractiveness of node j
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Classics: Nodal Markov Statistics

• Frank and Strauss (1986)
• Motivated by notions of “symmetry” and “homogeneity”
• Edges in Y that do not share an actor are conditionally

independent given the rest of the network

• Analogous to nearest neighbor ideas in spatial statistics
• Degree distribution: dk(y) = proportion of nodes of degree k

in y
• k-star distribution: sk(y) = proportion of k-stars in graph y
• triangels: t(y) = proportion of triangles in the graph y.
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Connecting Logistic Network
Regression to Bernoulli Graphs



Review: Logistic Network Regression

• A simple family of models for predicting unvalued ties
• Special case of standard logistic regression
• Dependent variable is a network adjacency matrix

• Model form:

log
(
Pr(Yij = 1)
Pr(Yij = 0)

)
= θ1Xij1 + θ2Xij2 + · · ·+ θkXijk = θT Xij

• Where Yij is the value of the edge from i to j on the
dependant relation, Xijk is the value of the kth predictor for the
(i , j) ordered, and θ1, . . . , θk are coefficients

log( p
1− p ) = logit(p),maps (0,1) to (−∞,∞)
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Logistic Network Regression in Practice

• Interpretation: Effects are on logit scale
• Unit change in ith covariate multiplies odds by exp(θi )

• We are assuming that edges are independent predictors,
covariates

• QAP tests also apply (warning: known tests may not be robust
to third variable effects, etc)

• In statnet, two ways to perform it
• netlogit, specialized tool in package sna
• ergm, generalized ERG function
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Example: Florentine families

• This is a data set of marriage ties among Renaissance
Florentine families. The data is originally from Padgett (1994)

library(ergm)

data(florentine)
m1 = ergm(flomarriage ~ edges + nodecov("wealth"))
m2 = ergm(flomarriage ~ edges + absdiff("wealth"))
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Example: Florentine families

Formula 1: flomarriage ~ edges + nodecov("wealth")
Formula 2: flomarriage ~ edges + absdiff("wealth")

Estimate Std. Error MCMC % p-value
Model 1: edges -2.595 0.536 0 0.000
Model 1: nodecov.wealth 0.011 0.005 0 0.026
Model 2: edges -2.302 0.402 0 0.000
Model 2: absdiff.wealth 0.016 0.006 0 0.013
BIC
Model 1: 112.68 Model 2: 111.53

24



ERGM



Moving Beyond the Logistic Case

• The logistic model works for dichotomous data, but is still very
limiting

• No way to model conditional dependence among edges

• E.g., true triad closure bias, reciprocity

• A more general framework: discrete exponential families
• Very general way of representing discrete distributions
• Turns up frequently in statistics, physics, etc.
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The Probability of a Graph (ERGM)

Pr(Y = y) = exp{θT g(y)}
κ(θ,Y) , y ∈ Y

• This is the probability of a single graph
• Also, the likelihood function for the general model
• The normalizing constant is summed over all possible graphs
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Interpreting ERGMS: Goal

• To re-express the probability of the graph in terms of the
probabilities of an individual tie

• This gives a “local” view of the model
• And some insight into what the θ coefficients mean
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Interpreting ERGMS: Some Notation

In order to re-express the probability of the graph in terms of the
probabilities of a tie, we need to introduce some notation:

• Y +
ij = {Y with Yij = 1} the graph w/ the (i , j)th dyad set to 1

• Y−ij = {Y with Yij = 0} the graph w/ the (i , j)th dyad set to 0
• Y c

ij = {Ykl with (k, l) 6= (i , j)} all dyads except (i,j)
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Interpreting ERGMS: The conditional probability of a link

This is a simple logical re-expression of Pr(Y = y) = exp{θT g(y)}
κ(θ,Y)

Pr(Yij = 1|Y c
ij ) =

Pr(Y = y+
ij )

Pr(Y = y+
ij ) + Pr(Y = y−ij )

=
exp{θT g(y+

ij )}
exp{θT g(y+

ij )}+ exp{θT g(y−ij )}

Note: the κ(θ) has canceled out, but . . . there is an even simpler
expression, in terms of the odds

29



Interpreting ERGMS: the Conditional log-odds of a link

Reminder: logit(p) = log
(

p
(1−p)

)
• Given, Pr(Yij = 1|Y c

ij ) = exp{θT g(y+
ij )}

exp{θT g(y+
ij )}+exp{θT g(y−

ij )}
• Then

log
{
Pr(Yij = 1|Y c

ij )
Pr(Yij = 0|Y c

ij )

}
= θT [g(y+

ij )− g(y−ij )]

= θT δ(yij)

Note: δ(yij) is known as the change statistic
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Interpreting ERGMS: Interpreting θ

• Simple case, The Bernoulli model, where g(y) is just the
number of ties in the graph

logit(Pr(Yij = 1|Y c
ij )) = θδ(y)

• For the edges term (and dyad independent term), δ(y) is the
change in the statistic when toggling yij from 0 to 1 is 1, so

log
( p

(1− p)

)
= θ

and
p = eθ

(1 + eθ)
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Interpreting ERGMS: Review

• So, the conditional probability of an (i , j) edge is simply the
inverse logit of θT δ(yij)

• One idea: to find θ, why not set this up as a logistic network
regression problem (i.e., regressing y on δ)?

• This is an “autologistic regression,” and the resulting estimator
is known as a pseudolikelihood estimator (more on this later)

• Problem: the probability here is only conditional – can use for
any one ij , but the joint likelihood of y is not generally the
product of Pr(Yij = yij |Y c

ij )
• Another view: y appears on both sides – can’t regress w/out

accounting for the “feedback” (i.e., dependence) among edges
• Does work iff edges are indepenedent

• Still, useful aid in interpretation!
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MLE and Statistical Inference

• What is Maximum Likelihood Estimation (MLE)?
• The likelihood function for the general ERGM is:

L(θ) = Pr(Y = y |θ) = exp(θT g(y ,X ))
κ(θ)

• We want to find the value of θ that maximizes the probability
of our data (Y ,X )

• But the function depends on κ(θ), which makes direct
calculation (and thus maximization) difficult (can be done for
small networks of size up to 7)
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Fitting ERGs to Data: Computing the MLE

Even simple models are too complex to get analytical
solutions!

• ERG computations are too difficult to perform directly
• Simulation used for purely computational purposes (e.g., dealing

with the normalizing factors)

• No (effective) way to draw directly from ERG distribution; have
to use approximation algorithms

• Primary tool: Markov chain Monte Carlo (MCMC)
• Iterative method for simulating draws from a given distirbution
• Algorithm is approximate (although often very, very good)

• What does this mean?
• MCMC requires more “care and feeding” than simple methods
• Algorithm can fail, requiring user intervention (rare in classic

regression context!)
34



Fitting ERGs to Data: MCMC

• Markov chain
• Stochastic process X1,X2, . . . on a state space S, such that

Pr(Xi |Xi−1,Xi−2, . . . ) = Pr(Xi |Xi−1) (i.e., only the previous
state matters – this is the Markov condition)

• Monte Carlo procedure
• Any procedure which uses randomization to perform a

computation, fixed execution time and uncertain output
(compare w/ Las Vegas procedures)

• Markov chain Monte Carlo (MCMC)
• Family of procedures using Markov chains to perform

computations and/or simulate target distributions; often, these
cannot be done any other way
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Fitting ERGs to Data: MCMC

• Important Example: Metropolis Algorithm

• Given Xi , draw X ′ from q(Xi ); w/probability min
(
1, Pr(X

′
)

Pr(Xi )

)
,

let Xi+1 = X ′ , else Xi+1 = Xi . Repeat for i + 1, i + 2, etc.
• Started w/arbitrary X0,X0,X1, . . . ,Xn converges to p(X ) in

distribution as n→∞
• Requires some constraints on q, but is very general - used when

we can’t sample from target distribution p directly (as when p is
an ERG distribution)
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Fitting ERGs to Data: Computing the MLE

• statnet employs MCMC methods and MCMC-MLE methods
to perform likelihood-based inference

• What happens when you run ergm?
• First guess at θ done using the MPLE
• Simulation of y1, . . . , yn based on the initial guess
• The simulated sample is used to find θ using MLE
• Previous two steps are iterated for good measure (since initial

estimate is likely off)
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Fitting ERGs to Data: statnet

No need to this yourself, software exists to handle this procedure!

• Dedicated statnet package for fitting, simulating models in
ERG form

• Basic call structure:

ergm(y ~ term1(arg) + term2(arg))

• All available terms can be found in:

help("ergm-terms")

• Summary, print and other methods can be used on the “ergm”
objects

• simulate command can also be used take draws from the
fitted model 38



Fitting ERGs to Data: statnet

Let’s do a simple example (remember the florentine network):

library(ergm)
data(florentine)
plot(flomarriage)
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Fitting ERGs to Data: statnet

# Begin with the most basic model: a lone edges term
flom.e <- ergm(flomarriage ~ edges) # Fit the model

Evaluating log-likelihood at the estimate.

flom.e # Print it

MLE Coefficients:
edges

-1.609
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Fitting ERGs to Data: statnet

summary(flom.e) # Get a summary

==========================
Summary of model fit
==========================

Formula: flomarriage ~ edges

Iterations: 5 out of 20

Monte Carlo MLE Results:
Estimate Std. Error MCMC % p-value

edges -1.6094 0.2449 0 <1e-04 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Null Deviance: 166.4 on 120 degrees of freedom
Residual Deviance: 108.1 on 119 degrees of freedom

AIC: 110.1 BIC: 112.9 (Smaller is better.)
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Fitting ERGs to Data: statnet

# Triangles?
flom.et <- ergm(flomarriage ~ edges + triangle)

Starting maximum likelihood estimation via MCMLE:
Iteration 1 of at most 20:
The log-likelihood improved by 0.002407
Step length converged once. Increasing MCMC sample size.
Iteration 2 of at most 20:
The log-likelihood improved by 0.0009785
Step length converged twice. Stopping.
Evaluating log-likelihood at the estimate. Using 20 bridges: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 .

This model was fit using MCMC. To examine model diagnostics and check for degeneracy, use the mcmc.diagnostics() function.
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Fitting ERGs to Data: statnet

summary(flom.et)

==========================
Summary of model fit
==========================

Formula: flomarriage ~ edges + triangle

Iterations: 2 out of 20

Monte Carlo MLE Results:
Estimate Std. Error MCMC % p-value

edges -1.6793 0.3553 0 <1e-04 ***
triangle 0.1571 0.5825 0 0.788
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Null Deviance: 166.4 on 120 degrees of freedom
Residual Deviance: 108.1 on 118 degrees of freedom

AIC: 112.1 BIC: 117.6 (Smaller is better.)
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Fitting ERGs to Data: Some Basic Families

• Several familiar and/or famous model families can be fit in
ergm

• Bernoulli Graph (N,p): edge term only:

data(samplike)
ergm(samplike ~ edges)

• Bernoulli Graph with covariates:

ergm(samplike ~ edges + nodematch("group"))

• p1: edge, row-sum, col-sum and mutuality (or any subset
thereof)

ergm(samplike ~ edges + sender + receiver + mutual)
44



Fitting ERGs to Data: Beyond Independence

Star Terms
• Simple subgraph census

terms
• k-stars: number of

subgraphs isomorphic to
Kij

• k-in/out-stars: number of
subgraphs isomorphic to
orientation of Kij

• Interpretations
• Tendency of edges to “stick

together" on endpoints
("edge clustering")

• Fixes moments of the
degree distribution

• 1-star fix mean degree,
2 star fixes variance

Stars In-starsOut-stars

DirectedUndirected
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Let’s try it!

# How about 2-stars?
flom.ets <- ergm(flomarriage ~ edges + kstar(2))
summary(flom.ets)

==========================
Summary of model fit
==========================

Formula: flomarriage ~ edges + kstar(2)

Iterations: 2 out of 20

Monte Carlo MLE Results:
Estimate Std. Error MCMC % p-value

edges -1.67300 0.82894 0 0.0458 *
kstar2 0.01263 0.16859 0 0.9404
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Null Deviance: 166.4 on 120 degrees of freedom
Residual Deviance: 108.1 on 118 degrees of freedom

AIC: 112.1 BIC: 117.7 (Smaller is better.)
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Fitting ERGs to Data: Beyond Independence

Triad Census Terms
• Most basic terms for

endogenous clustering
• Each term counts subgraphs

isomorphic to triads of a given
type (i.e., elements of the triad
census)

• In practice, triangles, cycles, and
transitives most often used

• Interpretations
• Tendencies toward transitive

closure, cycles, etc.
• Transitivity can be an indicator of

latent hierarchy
• Cyclicity can be an indicator of

extended reciprocity 47



Let’s try it!

# Triangles?
flom.et <- ergm(flomarriage ~ edges + triangle)
summary(flom.et)

==========================
Summary of model fit
==========================

Formula: flomarriage ~ edges + triangle

Iterations: 2 out of 20

Monte Carlo MLE Results:
Estimate Std. Error MCMC % p-value

edges -1.6820 0.3474 0 <1e-04 ***
triangle 0.1677 0.5772 0 0.772
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Null Deviance: 166.4 on 120 degrees of freedom
Residual Deviance: 108.1 on 118 degrees of freedom

AIC: 112.1 BIC: 117.6 (Smaller is better.)
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Model Adequacy and Issues of
Degeneracy



Model Adequacy and Issues of Degeneracy

Major Problems

1. Model Degeneracy
2. Quality of the Simulations
3. Model Adquacy Assessment

49



Model Degeneracy

Unstable ERGM specifications place almost all probability mass on a
small set of graphs that do not resemble the observed graph, and the
rest of the graphs in the model space have negligible probability
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Figure 4: Regions of the mean value and natural parameter spaces.
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Mark S. Handcock (2003). “Assessing Degeneracy in Statistical Models of Social Networks.” Working

Paper no. 39 Center for Statistics and the Social Sciences, University of Washington, Seattle.
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Quality of the Simulations

• Simulations can fail in several ways
1. Insufficient burn-in: starting point still affects results
2. Insufficient post-burn samples: sample hasn’t converged
3. May be degenerate: almost all graphs are same (usually

complete/empty)
4. Sample does not cover observed graph (problematic for

inference)
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Bad Simulation: Cheyenne Triangle Model
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Assessing Simulation Quality

Core MCMC diagnostic tools for ERGM

• In ergm, primary tool is mcmcm.diagnostics()
• Requires coda library
• Calculates various diagnostics on MCMC output

• Correlations and lagged correlations of model statistics
• Raftery-Lewis convergence diagnostics

• Basic syntax

fit <- ergm(Y ~ term(1) + term(2))
mcmc.diagnostics(fit)

• Can also directly plot statistics vs observed
• fit$sample provides normalized simulated stat from an ergm

object with 0 = observed value
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flobusines w/edges, 2-3 stars, triangles

flom.b1 <- ergm(flobusiness ~ edges + kstar(2) + kstar(3) + triangle)

mcmc.diagnostics(flom.b1, center = F)
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flobusines w/edges, 2-3 stars, triangles i

Sample statistics summary:

Iterations = 16384:4209664
Thinning interval = 1024
Number of chains = 1
Sample size per chain = 4096

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
edges 17.900 5.495 0.08586 0.08586
kstar2 46.930 20.554 0.32115 0.32115
kstar3 33.534 19.569 0.30577 0.30577
triangle 5.962 3.352 0.05237 0.05237

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
edges 5 15.00 18 22 28.00
kstar2 6 33.75 47 61 87.00
kstar3 1 20.00 32 46 76.62
triangle 0 4.00 6 8 13.00
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flobusines w/edges, 2-3 stars, triangles ii

Sample statistics cross-correlations:
edges kstar2 kstar3 triangle

edges 1.0000000 0.9556761 0.8614547 0.6897236
kstar2 0.9556761 1.0000000 0.9668333 0.8096087
kstar3 0.8614547 0.9668333 1.0000000 0.8390831
triangle 0.6897236 0.8096087 0.8390831 1.0000000

Sample statistics auto-correlation:
Chain 1

edges kstar2 kstar3 triangle
Lag 0 1.0000000000 1.0000000000 1.000000000 1.0000000000
Lag 1024 0.0007063715 0.0018293750 -0.004015708 0.0111763814
Lag 2048 0.0089224102 -0.0022615558 -0.003435802 0.0007435549
Lag 3072 0.0006843674 0.0030467296 0.004152127 0.0178084816
Lag 4096 0.0148756633 0.0176699174 0.019107064 0.0367444101
Lag 5120 -0.0089908404 0.0003101401 0.005446429 0.0067100116

Sample statistics burn-in diagnostic (Geweke):
Chain 1

Fraction in 1st window = 0.1
Fraction in 2nd window = 0.5
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flobusines w/edges, 2-3 stars, triangles iii

edges kstar2 kstar3 triangle
-0.08956 0.17634 -0.03401 0.08136

Individual P-values (lower = worse):
edges kstar2 kstar3 triangle

0.9286396 0.8600303 0.9728723 0.9351533
Joint P-value (lower = worse): 0.2430351 .

MCMC diagnostics shown here are from the last round of simulation, prior to computation of final parameter estimates. Because the final estimates are refinements of those used for this simulation run, these diagnostics may understate model performance. To directly assess the performance of the final model on in-model statistics, please use the GOF command: gof(ergmFitObject, GOF=~model).
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Strategies for Issues with MCMC Sample

• For burn-in issues, increase MCMC.burnin parameter
• For post-burn convergence, incease MCMC.samplesize

• MCMC.samplesize increasese final sample
• MCMC.interval increases subsampling interval; useful if chain

mixes slowly (i.e.,high autocorrelation and/or slow movement)

• If not of these work, it may be your model!
• E.g., degeneracy due to runaway clique formation
• Triangle, star terms especially bad (due to “nesting”)
• Try cuved variants (e.g., gwesp)
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Strategies for Issues with MCMC Sample

args(control.ergm)

function (drop = TRUE, init = NULL, init.method = NULL, main.method = c("MCMLE",
"Robbins-Monro", "Stochastic-Approximation", "Stepping"),
force.main = FALSE, main.hessian = TRUE, MPLE.max.dyad.types = 1e+06,
MPLE.samplesize = 50000, MPLE.type = c("glm", "penalized"),
MCMC.prop.weights = "default", MCMC.prop.args = list(), MCMC.interval = 1024,
MCMC.burnin = MCMC.interval * 16, MCMC.samplesize = 1024,
MCMC.effectiveSize = NULL, MCMC.effectiveSize.damp = 10,
MCMC.effectiveSize.maxruns = 1000, MCMC.effectiveSize.base = 1/2,
MCMC.effectiveSize.points = 5, MCMC.effectiveSize.order = 1,
MCMC.return.stats = TRUE, MCMC.runtime.traceplot = FALSE,
MCMC.init.maxedges = 20000, MCMC.max.maxedges = Inf, MCMC.addto.se = TRUE,
MCMC.compress = FALSE, MCMC.packagenames = c(), SAN.maxit = 10,
SAN.burnin.times = 10, SAN.control = control.san(coef = init,

SAN.prop.weights = MCMC.prop.weights, SAN.prop.args = MCMC.prop.args,
SAN.init.maxedges = MCMC.init.maxedges, SAN.burnin = MCMC.burnin *

SAN.burnin.times, SAN.interval = MCMC.interval, SAN.packagenames = MCMC.packagenames,
MPLE.max.dyad.types = MPLE.max.dyad.types, parallel = parallel,
parallel.type = parallel.type, parallel.version.check = parallel.version.check),

MCMLE.termination = c("Hummel", "Hotelling", "precision",
"none"), MCMLE.maxit = 20, MCMLE.conv.min.pval = 0.5,

MCMLE.NR.maxit = 100, MCMLE.NR.reltol = sqrt(.Machine$double.eps),
obs.MCMC.samplesize = MCMC.samplesize, obs.MCMC.interval = MCMC.interval,
obs.MCMC.burnin = MCMC.burnin, obs.MCMC.burnin.min = obs.MCMC.burnin/10,
obs.MCMC.prop.weights = MCMC.prop.weights, obs.MCMC.prop.args = MCMC.prop.args,
MCMLE.check.degeneracy = FALSE, MCMLE.MCMC.precision = 0.005,
MCMLE.MCMC.max.ESS.frac = 0.1, MCMLE.metric = c("lognormal",

"logtaylor", "Median.Likelihood", "EF.Likelihood", "naive"),
MCMLE.method = c("BFGS", "Nelder-Mead"), MCMLE.trustregion = 20,
MCMLE.dampening = FALSE, MCMLE.dampening.min.ess = 20, MCMLE.dampening.level = 0.1,
MCMLE.steplength.margin = 0.05, MCMLE.steplength = if (is.null(MCMLE.steplength.margin)) 0.5 else 1,
MCMLE.adaptive.trustregion = 3, MCMLE.sequential = TRUE,
MCMLE.density.guard.min = 10000, MCMLE.density.guard = exp(3),
MCMLE.effectiveSize = NULL, MCMLE.last.boost = 4, MCMLE.Hummel.esteq = TRUE,
MCMLE.steplength.min = 1e-04, SA.phase1_n = NULL, SA.initial_gain = NULL,
SA.nsubphases = 4, SA.niterations = NULL, SA.phase3_n = NULL,
SA.trustregion = 0.5, RM.phase1n_base = 7, RM.phase2n_base = 100,
RM.phase2sub = 7, RM.init_gain = 0.5, RM.phase3n = 500, Step.MCMC.samplesize = 100,
Step.maxit = 50, Step.gridsize = 100, CD.nsteps = 8, CD.multiplicity = 1,
CD.nsteps.obs = 128, CD.multiplicity.obs = 1, CD.maxit = 60,
CD.conv.min.pval = 0.5, CD.NR.maxit = 100, CD.NR.reltol = sqrt(.Machine$double.eps),
CD.metric = c("naive", "lognormal", "logtaylor", "Median.Likelihood",

"EF.Likelihood"), CD.method = c("BFGS", "Nelder-Mead"),
CD.trustregion = 20, CD.dampening = FALSE, CD.dampening.min.ess = 20,
CD.dampening.level = 0.1, CD.steplength.margin = 0.5, CD.steplength = 1,
CD.adaptive.trustregion = 3, CD.adaptive.epsilon = 0.01,
loglik.control = control.logLik.ergm(), seed = NULL, parallel = 0,
parallel.type = NULL, parallel.version.check = TRUE, ...)

NULL
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Model Assessment

• Model adequacy:
• Key idea: Model should reproduce relevant properties of the

observed data

• How does one assess model adequacy? Simulation!
• Simulate draws from fitted model
• Compare observed graph to simulated graphs on measures of

interest
• Verify that observed properties are well-covered by simulated

ones (e.g., not in 5% tails)

• What properties should be considered?
• This is application-sepcific – no single uniform answer
• Start with “in-model” statistics; ERG must get means right, but

still verify non-pathological distributions
• “Out-of-model” statistics can be common low-level properties

(e.g., degree, triad census) or theoretically motivated quantities 59



Checking Adequacy with gof

Basic syntax:

got(fit, GOF = ~term1 + term2)

• Has print, plot, and summary methods
• Note: still uses MCMC, so check convergence
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Example: flobusiness with edges i

flom.b1 <- ergm(flobusiness ~ edges)
flo_gof <- gof(flom.b1)

Goodness-of-fit for degree

obs min mean max MC p-value
0 5 0 2.08 8 0.18
1 3 0 4.74 9 0.50
2 2 1 4.76 9 0.18
3 2 0 2.74 6 0.94
4 3 0 1.14 5 0.36
5 1 0 0.46 3 0.66
6 0 0 0.06 1 1.00
7 0 0 0.02 1 1.00

Goodness-of-fit for edgewise shared partner

obs min mean max MC p-value
esp0 3 3 12.05 19 0.02
esp1 9 0 2.63 13 0.10
esp2 3 0 0.23 4 0.04
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Example: flobusiness with edges ii

esp3 0 0 0.01 1 1.00

Goodness-of-fit for minimum geodesic distance

obs min mean max MC p-value
1 15 5 14.92 22 1.00
2 18 1 20.66 42 0.88
3 11 0 18.72 38 0.50
4 8 0 11.31 24 0.72
5 3 0 5.49 18 0.84
6 0 0 2.15 12 0.96
7 0 0 0.72 9 1.00
8 0 0 0.31 6 1.00
9 0 0 0.08 3 1.00
10 0 0 0.02 2 1.00
Inf 65 0 45.62 113 0.58
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Example: flobusiness with edges
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Common Strategies

• Option 1: Add terms
• Which features are poorly captured? Is there a term which

would add in such effects (ideally minimally)?

• Option 2: Switch terms
• Can you replace an existing term with a similar one more likely

to succeed? (E.g., sociality or degree terms versus k-stars)

• Option 3: Do nothing
• Is the type of inadequacy a problem for your specific question?

Can it be tolerated in this case? How good is the overall fit?
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References and Places for More
Information



References and Places for More Information i

• Statnet wiki: https://statnet.org/trac
• JSS Special Issue:

https://www.jstatsoft.org/issue/view/v024
Workshop slides are based on the following courses

• Carter Butt’s 2009 Analysis of Social Network Data at UCI
• Mark Handcock’s 2011 Statistical Analysis of Networks at

UCLA
• Peter Hoff’s Statistical Analysis of Social Networks at UW
• Martina Morris’ 2016 Statistical Analysis of Social Networks at

UW
• Zack Almquist’s 2015 Social Network Analysis: Theory and

Methods at UMN
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